Copied to
clipboard

G = C722Q8order 392 = 23·72

The semidirect product of C72 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial

Aliases: C722Q8, Dic7.D7, C71Dic14, C14.5D14, C2.5D72, C7⋊Dic7.2C2, (C7×C14).5C22, (C7×Dic7).1C2, SmallGroup(392,22)

Series: Derived Chief Lower central Upper central

C1C7×C14 — C722Q8
C1C7C72C7×C14C7×Dic7 — C722Q8
C72C7×C14 — C722Q8
C1C2

Generators and relations for C722Q8
 G = < a,b,c,d | a7=b7=c4=1, d2=c2, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

2C7
2C7
2C7
7C4
7C4
49C4
2C14
2C14
2C14
49Q8
7Dic7
7C28
7Dic7
7C28
14Dic7
14Dic7
14Dic7
7Dic14
7Dic14

Smallest permutation representation of C722Q8
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7 6 5 4 3 2)(8 14 13 12 11 10 9)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 49 48 47 46 45 44)(50 56 55 54 53 52 51)
(1 27 8 20)(2 26 9 19)(3 25 10 18)(4 24 11 17)(5 23 12 16)(6 22 13 15)(7 28 14 21)(29 48 36 55)(30 47 37 54)(31 46 38 53)(32 45 39 52)(33 44 40 51)(34 43 41 50)(35 49 42 56)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7,6,5,4,3,2)(8,14,13,12,11,10,9)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,49,48,47,46,45,44)(50,56,55,54,53,52,51), (1,27,8,20)(2,26,9,19)(3,25,10,18)(4,24,11,17)(5,23,12,16)(6,22,13,15)(7,28,14,21)(29,48,36,55)(30,47,37,54)(31,46,38,53)(32,45,39,52)(33,44,40,51)(34,43,41,50)(35,49,42,56), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7,6,5,4,3,2)(8,14,13,12,11,10,9)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,49,48,47,46,45,44)(50,56,55,54,53,52,51), (1,27,8,20)(2,26,9,19)(3,25,10,18)(4,24,11,17)(5,23,12,16)(6,22,13,15)(7,28,14,21)(29,48,36,55)(30,47,37,54)(31,46,38,53)(32,45,39,52)(33,44,40,51)(34,43,41,50)(35,49,42,56), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7,6,5,4,3,2),(8,14,13,12,11,10,9),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,49,48,47,46,45,44),(50,56,55,54,53,52,51)], [(1,27,8,20),(2,26,9,19),(3,25,10,18),(4,24,11,17),(5,23,12,16),(6,22,13,15),(7,28,14,21),(29,48,36,55),(30,47,37,54),(31,46,38,53),(32,45,39,52),(33,44,40,51),(34,43,41,50),(35,49,42,56)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49)]])

47 conjugacy classes

class 1  2 4A4B4C7A···7F7G···7O14A···14F14G···14O28A···28L
order124447···77···714···1414···1428···28
size111414982···24···42···24···414···14

47 irreducible representations

dim111222244
type+++-++-+-
imageC1C2C2Q8D7D14Dic14D72C722Q8
kernelC722Q8C7×Dic7C7⋊Dic7C72Dic7C14C7C2C1
# reps1211661299

Matrix representation of C722Q8 in GL6(𝔽29)

100000
010000
001000
000100
0000814
00001828
,
100000
010000
0001000
0026300
000010
000001
,
010000
2800000
0028000
0002800
0000280
0000111
,
13270000
27160000
0031900
00242600
000010
000001

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,18,0,0,0,0,14,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,26,0,0,0,0,10,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,28,0,0,0,0,1,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,11,0,0,0,0,0,1],[13,27,0,0,0,0,27,16,0,0,0,0,0,0,3,24,0,0,0,0,19,26,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C722Q8 in GAP, Magma, Sage, TeX

C_7^2\rtimes_2Q_8
% in TeX

G:=Group("C7^2:2Q8");
// GroupNames label

G:=SmallGroup(392,22);
// by ID

G=gap.SmallGroup(392,22);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,-7,20,61,26,488,8404]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^7=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C722Q8 in TeX

׿
×
𝔽